1
|
Bilgen, S., Keles, S. & Kaygusuz, K., 2012. Calculation of higher and lower heating values and chemical exergy values of liquid products obtained from pyrolysis of hazelnut cupulae. Energy, 41(1), pp. 380-385.
|
2
|
Bouazza, N., El Mrihi, A. & Maate, A., 2016. Geochemical Assessment of Limestone for Cement Manufacturing. Procedia Technology, Volume 22, pp. 211-218.
|
3
|
Boundy, B., Diegel, S. W., Wright, L. & Davis, S. C., 2011. Biomass Energy Data Book. 4 ed. Oak Ridge: U.S. Department of Energy.
|
4
|
Burchart-Korol, D., Korol, J. & Smolinski, A., 2014. Chemical composition analysis of raw materials used in iron ore sinter plants in Poland. Metalurgija, Volume 3, p. 366.
|
5
|
Cooper, C. D., Kim, B. & MacDonald, J., 1999. Estimating the Lower Heating Values of Hazardous and Solid Wastes.. J Air Waste Manag Assoc, 4(49), pp. 471-471.
|
6
|
Daly, R. A., 1910. Average Chemical Compositions of Igneous-Rock Types. Proceedings of the American Academey of Arts and Sciences, 45(7), pp. 211-240.
|
7
|
Doinikova, O. A., Solodov, I. N. & Chertok, M. B., 2008. Mineral Composition of Uranium Ore at the Dalmatovo Deposit, Russi. Geology of Ore Deposits, 51(6), pp. 486-495.
|
8
|
Eboh, F. C., Ahlström, P. & Richards, T., 2016. Estimating the specific chemical exergy of municipal solid waste. Energy Science & Engineering, 4(3), pp. 217-231.
|
9
|
Fluegel, A., 2007. Glass Properties. [Online] Available at: http://glassproperties.com/ [Accessed 28 01 2018].
|
10
|
Han, T. U. et al., 2015. Analytical pyrolysis properties of waste medium-density nfiberboard and particle board. Journal of Industrial and Engineering Chemistry, Volume 32, pp. 345-352.
|